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Attention is integral to cognition and perception, underlying per-
formance on almost every task in daily life. However, despite—or 
maybe because of—attention’s pervasiveness, attention research is 
increasingly specialized and fragmented, and investigators lack a 
simple, standardized way to summarize a person’s attentional abili-
ties. Although reducing any complex mental process to a single meas-
ure risks oversimplification, summary indices are theoretically and 
practically valuable. For example, intelligence research and education 
practice depend heavily on the ability to measure gF, an index of 
fluid intelligence1–3, and working memory research relates numer-
ous behaviors to a fundamental measure of capacity4–6. Comparable 
measures of attention have been elusive because behavioral tasks are 
diverse and not broadly standardized.

These challenges can be addressed with a brain-based measure of 
attention, which would summarize global attentional function and 
help researchers improve comparisons across individuals and track 
changes in attention longitudinally. As an initial step, we developed 
a neuromarker of sustained attention, or the ability to maintain 
focus and performance on a task at hand7–9. This neuromarker is 
based on intrinsic whole-brain functional connectivity, the degree to 
which brain activity in distinct neural regions is correlated over time. 
Synchronous fluctuations in the blood oxygenation level–dependent  
(BOLD) signal, measured with functional magnetic resonance  
imaging (fMRI), are thought to reflect functional connectivity in that 
they reveal regions engaging in common or related processing; these 
can be observed either during task performance or at rest, in the 
absence of an explicit task. Because sustained attention encompasses 
a variety of functions, including information selection, enhancement 
of selected information10 and inhibition of unselected information7, 

it is unsurprising that it involves a wide variety of brain regions, 
including the frontal and parietal cortices, thalamus, basal ganglia, 
ventral perceptual areas and cerebellum11–14. Accordingly, whole-
brain measures should provide a more holistic measure of attentional 
abilities than performance on a single task or activity in a single 
brain region. Practically, an attentional index based on whole-brain 
networks measured at rest is well suited to use in both research and 
clinical contexts given that resting-state data is relatively straight-
forward to collect and share across acquisition sites and language 
and cultural barriers.

Here, with a fully cross-validated, data-driven analysis, we  
demonstrate that the strength of functional brain networks  
predicts sustained attention in previously unseen individuals.  
We first model the relationship between connectivity strength and 
task performance in a subset of individuals as they perform the 
gradual-onset continuous performance task (gradCPT), a test of 
sustained attention and inhibition, during fMRI15–19. We demon-
strate that our network model derived from these data, which we  
call the Sustained Attention Network (SAN) model, predicts the 
behavioral performance of novel individuals from their task-based 
connectivity. The model also generalizes to the resting state, pre-
dicting novel individuals’ performance from connectivity observed 
during rest alone. As a final test of generalizability, we show that the 
SAN model can also predict symptoms of attention deficit hyper-
activity disorder (ADHD), which is characterized by deficits in 
sustained attention and inhibition20, in children and adolescents 
collected at an independent research site. These results suggest that 
whole-brain functional connectivity is a robust neuromarker of  
sustained attentional abilities.
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Although attention plays a ubiquitous role in perception and cognition, researchers lack a simple way to measure a person’s 
overall attentional abilities. Because behavioral measures are diverse and difficult to standardize, we pursued a neuromarker of 
an important aspect of attention, sustained attention, using functional magnetic resonance imaging. To this end, we identified 
functional brain networks whose strength during a sustained attention task predicted individual differences in performance. 
Models based on these networks generalized to previously unseen individuals, even predicting performance from resting-state 
connectivity alone. Furthermore, these same models predicted a clinical measure of attention—symptoms of attention deficit 
hyperactivity disorder—from resting-state connectivity in an independent sample of children and adolescents. These results 
demonstrate that whole-brain functional network strength provides a broadly applicable neuromarker of sustained attention.
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RESULTS
Network definition
To test whether functional connectivity predicts attentional perform-
ance, we scanned 25 individuals as they performed the gradCPT, a 
test of sustained attention and inhibition that produces a range of 
behavior across healthy participants17,18. Performance was assessed 
with sensitivity (d′). Given that head motion confounds analyses 
of functional connectivity, we confirmed that d′ was not correlated 
with average frame-to-frame motion during task performance  
(r = 0.005, P = 0.98; see Online Methods for additional analyses 
ruling out motion confounds). We also collected resting-state data 
from each participant.

Network nodes were defined with a 268-node functional brain 
atlas designed to maximize the similarity of the voxel-wise time series 
within each node21,22. This atlas, which comprises nodes with more 
coherent time courses than those defined by the automatic anatomic 
labeling atlas22, represents an improvement over anatomical parcella-
tion schemes because anatomical boundaries do not necessarily match 
functional ones. Whole-brain coverage, including the cerebellum and 
brainstem, is another advantage of the current atlas. Although defin-
ing nodes on the basis of a subset of regions of interest reduces the 
number of statistical comparisons and thus false positives, it may pre-
clude discovery of informative connections and reduce the network’s 
overall predictive power. Importantly, the problem of false positives 
can be addressed with cross-validation.

For each participant, a time course was calculated for each node 
by averaging the BOLD signal of all of its constituent voxels at each 
time point during task performance. Pairwise Pearson correlation 
coefficients were computed between the time courses of each possible 
pair of nodes and were Fisher normalized. The resulting 268 × 268 
symmetric correlation matrices represented the set of connections or 
edges in each participant’s task-based connectivity profile.

To assess the relevance of functional connections to behavior, we 
performed the following analysis pipeline. First, robust regression 
between each edge in the connectivity matrices and d′ was performed 
across subjects. The resulting r values were statistically thresholded 
at P < 0.01 and separated into a positive tail (edges whose strength 
indexed higher d′ across subjects) and a negative tail (edges whose 
strength indexed lower d′ across subjects). Mean r value was r = 0.59 
in the positive tail and r = −0.58 in the negative tail. When networks 
were defined on all subjects, the positive tail comprised 1,496 edges 
and the negative tail, 1,299 edges. Together these represent <8% of 
the brain’s 35,778 total edges as defined by this atlas.

A single summary statistic, network strength, was used to character-
ize each participant’s degree of connectivity in the positive and negative 
tails. Positive network strength was calculated by summing the edge 
strengths (Fisher-normalized r values) from a participant’s connectivity 
matrix in the edges of the positive tail, and negative network strength 
was calculated by summing the r values of the edges in the negative 
tail. Network strength correlated with d′ across subjects, validating 
its use as a summary statistic (positive network strength: r = 0.95,  
P = 1.3 × 10−13; negative network strength: r = −0.97, P = 2.44 × 10−15). 

In graph-theoretic terms, this statistic is equivalent to a weighted 
degree measure for each the networks (positive and negative)23.

To confirm that d′ was more closely related to the strength of  
the whole network than to the strength of individual edges, we  
compared the relationship between d′ and network strength to  
the relationship between d′ and every edge that appeared in the  
positive or negative tail across subjects. The correlation between d′ 
and positive network strength (r = 0.95) was numerically but not sta-
tistically higher than the strongest correlation between d′ and an indi-
vidual edge in the positive tail (r = 0.92), Steiger’s z (ref. 24) = 1.25,  
P = 0.2. It was, however, significantly higher than the second-strongest  
d′-edge correlation in the positive tail (r = 0.85), Steiger’s z = 3.29,  
P = 0.001. The correlation between d′ and negative network 
strength (r = −0.97) was more strongly negative than the strongest 
correlation between d′ and an individual edge in the negative tail  
(r = −0.82), Steiger’s z = 4.72, P = 2.39 × 10−6. Thus, network strength 
as a whole better captures individual variability in d′ than does  
any single edge.

Internal validation: prediction from task connectivity
To determine whether network strength predicted task performance 
in novel individuals, a leave-one-out cross-validation procedure 
was employed. In each set of n − 1 participants, predictive networks 
were defined and used to calculate positive and negative network 
strengths as described above. Networks ranged in size from 1,099 to 
1,540 edges. Next, simple linear models were constructed relating 
network strength during task performance to d′ in these individuals. 
Finally, these models were used to predict the left-out individual’s d′ 
on the basis of the strength of his or her positive and negative network 
during task performance. Pearson correlations between observed and 
predicted d′ scores were used to assess predictive power. All statistical 
tests were two-tailed.

Demonstrating that functional connectivity can be used to predict 
attentional performance in novel individuals, observed and predicted 
d′ values were significantly correlated (positive network: r = 0.86,  
P = 3.4 × 10−8; negative network: r = 0.87, P = 1.6 × 10−8; Fig. 1).  
A general linear model (GLM) constructed using strength in 
both networks also generated significant d′ predictions (r = 0.84,  
P = 1.3 × 10−7). However, GLM predictions were not more accurate 
than the predictions of the positive (Steiger’s z = 0.51, P = 0.61) or the 
negative network (Steiger’s z = 1.78, P = 0.08), suggesting that these 
two tails provide some degree of redundant information. Positive and 
negative networks did not differ in their predictive power (Steiger’s 
z = 0.45, P = 0.65).
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Figure 1 Functional connectivity models predict sustained attention  
performance. Scatter plots show correlations between observed  
gradCPT d′ values and predictions by positive and negative networks  
and general linear models (GLM) that take into account positive and 
negative network strength. Network models were iteratively trained  
on task data from n − 1 subjects in the gradCPT data set and tested  
on task data (top row) and resting-state data (bottom row) from the  
left-out individual.
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Internal validation: prediction from rest connectivity
We next demonstrated that predictive networks generalize to resting-
state data from novel individuals. To this end, we used the positive 
and negative network models described in the section labeled above as 
“Internal validation: prediction from task connectivity.” However, we 
now applied these models to data collected at rest to predict the left-
out individual’s d′; in other words, the summary statistic of network 
strength was calculated based on the left-out individual’s resting-state 
connectivity matrix rather than his or her task-based matrix.

Models trained on task data significantly predicted a previously 
unseen individual’s task performance based on his or her resting-state 
data (correlation between predicted and observed d′ values, positive 
network: positive network: r = 0.49, P = 0.014; negative network:  
r = 0.49, P = 0.012; GLM: r = 0.43, P = 0.031; Fig. 1). The posi-
tive and negative network models and the GLM did not differ in 
their predictive power (Steiger’s |z| values < 1.30, P values > 0.19). 
Although network models did not predict d′ scores from resting-state 
connectivity as well as they did from task-based connectivity (Steiger’s  
z values > 3.34, P values < 0.0009), significant predictions from  
rest data suggest that attentional abilities are reflected in intrinsic  
connectivity. This effect cannot be explained by head motion, as  
average frame-to-frame motion during resting runs was not corre-
lated with d′ (r = −0.17, P = 0.42).

External validation: ADHD symptom prediction
As an even stronger test of generalizability, we applied these gradCPT 
network models to a completely independent validation data set con-
sisting of resting-state fMRI scans from 113 children and adolescents 
(age range 8–16 years) with and without ADHD diagnoses. These 
data were collected at Peking University and provided by the ADHD-
200 Consortium25. In this data set, attentional ability was assessed 
using the ADHD Rating Scale IV26 (ADHD-RS), a clinical measure 
of ADHD on which a higher score indicates more frequent symp-
toms and/or a more severe attention deficit. In order to generalize our  
network model to this new data set, we defined a “high-attention net-
work” as the set of edges that appeared in the positive network of every 
iteration of the leave-one-out cross-validation described above in the 
section titled “Internal validation: prediction from task connectivity.” 
A “low-attention network” was defined in an analogous way with 
edges whose strength was inversely correlated with d′ (Fig. 2). The 
high-attention network comprised 757 edges, and the low-attention 
network, 630 edges. In the full gradCPT sample, we constructed linear  

models (Sustained Attention Network, or SAN, models) relating  
high- and low-attention network strength to d′.

We then calculated the strength of the high- and low-attention 
networks during rest in each of the 113 individuals in the Peking 
University data set, and submitted these strengths to the SAN mod-
els to make predictions about the individuals’ attentional abilities.  
The high-attention network model inversely predicted ADHD-RS 
score (r = −0.30, P = 0.001; Fig. 3), indicating that individuals with 
more connectivity in the high-attention network showed less severe 
symptoms of attention deficit. The low-attention network model  
negatively predicted ADHD-RS score (r = −0.34, P = 2.2 × 10−4), 
such that individuals with more connectivity in the low-attention 
network showed higher symptom severity. Predictions of a GLM 
defined in the gradCPT data set were also significantly correlated 
with ADHD-RS scores (r = −0.34, P = 2.2 × 10−4). Note that model 
predictions are inversely correlated with ADHD-RS scores because 
they were trained to predict d′; thus, higher predictions corre-
spond to better attentional abilities and lower ADHD-RS scores.  
There was no correlation between average frame-to-frame head motion 
and observed ADHD-RS score (r = 0.03, P = 0.78), ruling out this  
potential confound.

To further confirm that SAN model predictions were specific 
to attentional abilities, we examined the relationship between  
predicted ADHD-RS scores and age and IQ, as measured by the 
Wechsler Intelligence Scale for Chinese Children-Revised27.  
After controlling for age and IQ, SAN model predictions remained 
significantly correlated with ADHD-RS score. However, predictions 
were not correlated with age or IQ after controlling for the other two 
measures (Table 1). Thus, the model is capturing variance in func-
tional connectivity that is closely related to attention rather than to 
general cognitive ability.

Suggesting that results were not driven by individual differences 
in general arousal, SAN model predictions were also anticorre-
lated with scores on the hyperactivity-impulsivity subscale of the 
ADHD Rating Scale-IV (positive: r = −0.26, P = 0.006; negative:  
r = −0.32, P = 5.75 × 10−4; GLM: r = −0.32, P = 4.96 × 10−4). That 
is, if the SAN model were predicting high arousal rather than vigi-
lant attention, it is likely that predictions would correlate positively 
with hyperactivity scores. Instead, models predicted that hyperactive  
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Figure 2 Functional connections predicting gradCPT performance and 
ADHD-RS scores. (a) The 757 edges in the high-attention network 
(predicting higher d′ values in the gradCPT sample and lower ADHD-RS  
scores in the ADHD-200 sample) are visualized in orange. The 630 
edges in the low-attention network (predicting lower d′ values in the 
gradCPT sample and higher ADHD-RS scores in the ADHD-200 sample) 
are visualized in blue. Edges that appear in both the gradCPT and ADHD 
networks appear in bold. Macroscale regions include prefrontal cortex 
(PFC), motor cortex (Mot), insula (Ins), parietal (Par), temporal (Tem), 
occipital (Occ), limbic (including the cingulate cortex, amygdala and 
hippocampus; Lim), cerebellum (Cer), subcortical (thalamus and striatum; 
Sub) and brainstem (Bsm). (b) Differences in the number of edges 
between each pair of macroscale regions, calculated by subtracting the 
number of edges in the low-attention network from the number in the 
high-attention network. (c) Differences in the number of edges between 
each pair of canonical networks, calculated by subtracting the number of 
edges in the low-attention network from the number in the high-attention 
network. Canonical networks28 include the subcortical-cerebellum (SubC), 
motor (MT), medial frontal (MF), visual I (VI), visual II (VII), visual 
association (VA), default mode (DM) and frontoparietal (FP).
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individuals had worse attention, suggesting that the results are not 
driven by individual differences in arousal.

With this further validation of the SAN model, we demonstrate 
that predictive networks not only generalize across cognitive states 
(task versus rest), they also generalize across data acquisition site 
(New Haven versus Beijing), age group (adults versus children and 
adolescents), and—critically, given that we are pursuing a generaliz-
able measure of sustained attention—behavioral measures of attention 
(gradCPT d′ versus ADHD symptom scores).

Functional anatomy of attention networks
The high- and low-attention networks spanned numerous cortical, 
subcortical and cerebellar nodes. To facilitate characterization of 
the biological substrates underlying these two networks, we sum-
marized connectivity patterns in two ways. First, we grouped the 268 
nodes into macroscale brain regions that were anatomically defined 
(for example, cortical lobes) and examined relative numbers of con-
nections between each pair of regions in each network. Second, we 
grouped nodes into eight canonical networks similar to those previ-
ously reported in resting-state literature (for example, default mode); 
these networks were defined functionally using the same data used to 
create the original parcellation28. We then examined relative levels of 
within- and between-network connectivity represented in the high- 
and low-attention networks. Despite the complexity of the high- and 
low-attention networks that emerged from our data-driven model 
construction (see Fig. 2a), several anatomical trends emerged to  
distinguish them.

In the first analysis, we found that connections between motor 
cortex, occipital lobes and the cerebellum were primarily predictors 
of better sustained attention, whereas connections between tempo-
ral and parietal regions, as well as intratemporal and intracerebel-
lar connections, predicted worse attention across subjects (Fig. 2b).  
The involvement of the cerebellum in both networks provides  
evidence for a significant role of the cerebellum in attention and cog-
nition29,30. In addition, although these findings may be unexpected  
given the traditional view of ADHD as primarily involving execu-
tive control regions and networks, recent work has emphasized the 
involvement of a variety of brain regions, including motor, occipital 
and parietal cortex and the cerebellum, in the disorder31.

In the second analysis based on canonical functional networks,  
connections within the subcortical-cerebellum network, and  
connections between the subcortical-cerebellum network and the fron-
toparietal network, appeared more frequently in the low- than in the 
high-attention network (Fig. 2c). Connections between the subcortical- 
cerebellum network and the medial frontal, 
motor, visual I and visual association net-
works, on the other hand, appeared more 
frequently in the high-attention network 
(Fig. 2c). The involvement of the subcortical- 
cerebellum and medial frontal networks in the 
high-attention network mirrors observations  
of frontal-striatal-cerebellar circuit dys-
function in ADHD32 and suggests that the 

connections that are disrupted in ADHD also characterize healthy 
individuals with poor attentional abilities.

To assess the importance of individual canonical networks to 
the SAN models, we computationally ‘lesioned’ the high- and  
low-attention networks to exclude edges from each. That is, in an iter-
ative analysis, we masked connectivity matrices to exclude edges that 
appeared in one of the eight canonical networks included in Figure 2c.  
We then defined network models and predicted attention as described 
above. For example, after excluding edges in the subcortical-cerebellum  
network, which contained 90 nodes, we submitted 178 × 178 matrices 
rather than 268 × 268 matrices to our analysis pipeline. We found that, 
in all cases, models missing one of the eight functional networks were 
still able to predict sustained attention from gradCPT and ADHD data 
(Supplementary Table 1).

Predictions of a lesioned matrix were significantly worse than pre-
dictions of the whole-brain matrix in only one case—when models 
were trained on a matrix that excluded the frontoparietal network and 
tested on gradCPT rest data (Steiger’s z = 2.11, P = 0.04)—although 
this did not survive Bonferroni correction for 24 comparisons.  
There was a trend such that ADHD predictions were worse when 
models were trained on matrices that excluded the default mode 
network (Steiger’s z = 1.85, P = 0.06). When models were trained  
on matrices that excluded the visual I network, predictions from  
gradCPT task data were more successful than those made when  
using the whole brain (Steiger’s z = 2.63, P = 0.01), but again this did 
not survive Bonferroni correction. These results further emphasize 
the fact that models do not rely on strength in a single canonical 
network, but rather incorporate attention-relevant information from 
hundreds of diverse within- and between-network connections across 
the brain.
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Figure 3 Sustained Attention Network (SAN) models, defined with 
gradCPT subjects, significantly predict scores on the ADHD-Rating 
Scale (ADHD-RS) in an independent sample of children and adolescents 
from the ADHD-200 data set. Predictions are negatively correlated with 
ADHD-RS scores because models were trained to predict d′; thus, higher 
predictions correspond to better attentional abilities and lower ADHD-RS 
scores. These individuals were diagnosed with ADHD (solid dots) or as 
typically developing controls (TDC, hollow dots).

Table 1 Partial correlations between SAN model predictions ADHD-RS scores, IQ and age
ADHD-RS score IQ Age

r value P value r value P value r value P value

Predictive network Positive −0.27 0.0047 0.11 0.25 −0.09 0.33
Negative −0.30 0.0015 0.13 0.17 0.07 0.45
GLM −0.30 0.0016 0.13 0.16 0.10 0.29

One subject did not have an IQ score, so these correlations were performed on 112 individuals. Correlations between 
ADHD-RS scores, IQ and age are provided in the “ADHD-200 data set: Participants” section of the Online Methods.
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In addition to these analyses, we measured the importance of  
individual nodes by ranking them according to their sum of connec-
tions in the high- and low-attention networks; the most important 
nodes are presented in Supplementary Table 2. All of the top ten most 
highly connected nodes were located in the cerebellum, temporal or 
occipital cortices, underscoring the importance of these regions for 
attentional function. Crucially, though, for most of these nodes the 
difference between the high- and low-attention networks was not 
in their overall degree of connectivity, but rather in their specific 
functional partners (note in Supplementary Table 2 that most of the 
top nodes had similar numbers of connections in both the high- and 
low-attention networks). This finding cautions against oversimplify-
ing predictive networks to a handful of regions, instead emphasizing 
the need to consider specific pairwise connections across the entire 
brain to best characterize individuals’ attentional ability.

ADHD and SAN network overlap
To identify edges that consistently predicted attentional function across 
data sets, we defined high- and low-ADHD networks in the full Peking 
University sample. These networks were constructed using the analysis 
pipeline described in the “Network definition” section above, except 
that ADHD-RS score, instead of gradCPT d′, was used as the measure 
of attention. In addition, only 236 nodes of the original 268 were used 
due to a lack of whole-brain coverage in some individuals (see Online 
Methods for more information). Strength in the resulting high-ADHD 
network, containing 595 edges, was correlated with more severe symp-
toms scores (r = 0.75, P = 2.04 × 10−21); and strength in the low-ADHD 
network, 477 edges, was correlated with less severe symptoms (r = −0.76, 
P = 1.20 × 10−22). Note that this analysis is not cross-validated within 
the Peking University sample; rather, it validates network strength as a 
summary statistic in this data set. Demonstrating that ADHD networks 
generalize to unseen subjects, models based on strength in the high- 
and low-ADHD networks during task and at rest predicted d′ in the 
gradCPT sample (Fig. 4); this is the reverse of the analysis described in 
the “External validation: ADHD symptom prediction” section above, 
indicating that this method achieves significant predictive power even 
after exchanging the roles of training and testing data sets.

Networks predicting better or worse sustained attention in both data 
sets had more common edges than those predicting opposite patterns of 
attentional function. Whereas the high-attention network and the low-
ADHD network had 31 edges in common (edges in bold, Fig. 2a), the 
high-attention and high-ADHD networks had only two. In addition, 
the low-attention and high-ADHD networks shared 36 edges, whereas 
the low-attention and low-ADHD shared none. In a permutation test 
in which we compared 100 randomly generated positive and nega-
tive gradCPT and ADHD networks, overlap did not exceed 10 edges 
in any case (mean number of overlapping edges = 0.21, s.d. = 0.53).  
Thus, the P value associated with 31 and 36 common edges is 1/10,001 
(see “Network overlap” in the Online Methods for details).

BOLD variance does not predict attention
An important strength of SAN models is that they predict sustained 
attentional abilities from resting-state data. The use of resting-state 

data motivated us to use functional connectivity rather than overall 
activity as a predictor because connectivity can be calculated from 
data acquired at rest, while overall activity cannot (because there is 
no absolute measure of activity in resting runs).

To address whether a measure other than functional connectivity 
predicted attentional abilities, we tested models defined on BOLD vari-
ance. BOLD variance, a measure of the variability in the BOLD signal 
that can be calculated from resting-state data, is likely influenced by 
both metabolic function and anatomic factors such as partial volume 
effects introduced by the gray- versus white-matter segmentation and/or  
differing numbers of gray-matter voxels per node due to underlying 
variation in regional tissue volumes and gyral folding patterns.

BOLD variance models were defined in the same way as func-
tional connectivity models, except that features consisted of 1 × 268  
vectors of BOLD variance (one value per node) rather than 268 × 268  
matrices of functional connections. In a cross-validated analysis  
analogous to that used to generate SAN models, BOLD variance 
models were defined on gradCPT task data and used to make  
predictions from gradCPT task, gradCPT rest and ADHD data  
(see Online Methods for details). Demonstrating that functional con-
nectivity is a better predictor of attention than BOLD variance, these 
models did not successfully predict sustained attentional abilities 
(Supplementary Table 3).

DISCUSSION
In a group of adults performing a sustained attention task, we identi-
fied functional brain networks whose strength predicted individual 
differences in task success. These whole-brain network models pre-
dicted novel individuals’ task performance from resting-state data 
alone, providing evidence for meaningful attention-related signal 
in patterns of intrinsic connectivity. Demonstrating that models are 
robust and generalizable, networks defined on sustained-attention 
task data predicted a clinical measure of ADHD in children and ado-
lescents from a completely independent sample. That is, connections 
that predicted better task performance in the Yale data set predicted 
less severe ADHD symptoms in the Peking University data set, and 
connections that predicted worse performance predicted more severe 
ADHD symptoms. This result—that complex brain network models 
predict different measures of attention in disparate populations—
demonstrates that functional brain networks can serve as a holistic 
neural index of sustained attention.

The current models, which generalize across two data sets and two 
measures of sustained attention, make significant progress toward 
identifying a neuromarker of sustained attention. However, they 
do not imply that sustained attention is a unitary process. Rather, 
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Figure 4 Connectivity models defined on ADHD-200 data predict gradCPT 
performance in an independent group of participants. Scatter plots 
show predictions of models defined using edges negatively (orange) and 
positively (blue) related to ADHD-RS scores in ADHD-200 resting state 
data. Predictions of a GLM, which incorporates low- and high-ADHD 
network strength, are shown in black. These models were applied to 
gradCPT task (top) and resting-state data (bottom).
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it is likely that the overall sustained attention factor measured here 
recruits many cognitive and attentional processes (such as inhibi-
tion), which are captured by the data-driven functional connectivity 
analyses. Future behavioral work with a wider range of tasks is needed 
to determine whether a single attention factor is feasible33, such as g 
in intelligence research.

The current result also suggests that models based on functional 
brain networks are powerful, generalizable predictors of cogni-
tive abilities. Although previous studies have demonstrated that 
pre-task functional connectivity is correlated with perceptual task  
performance34 and that  resting-state functional connectivity predicts 
fluid intelligence within a single data set28,35, we are not aware of any 
study to date that has demonstrated the use of functional network  
models for successful across-data-set prediction of a cognitive ability.

The proposed neuromarker of sustained attention, the Sustained 
Attention Network (SAN) model, complements existing work on 
individual differences in attention and offers several advantages. 
Importantly, SAN models are predictive rather than descriptive in 
nature and thus contribute to one of the primary goals of human 
neuroimaging: to identify neuromarkers that can predict a person’s 
educational or health outcomes36,37. Here, predictions can be made 
from resting-state data collected over a short period of time (in the 
ADHD sample, only 8 min), which facilitates data sharing and fur-
ther tests of generalizability. The use of resting-state data is especially 
advantageous in populations that have difficulty performing tasks, 
and it provides an unbiased way for researchers and clinicians to track 
and compare attentional function longitudinally across development 
or training, unconfounded by changes in task performance.

In addition to demonstrating that functional connectivity is a 
powerful predictor of attentional abilities, our results support recent 
characterizations of sustained attention as emerging from coordinated 
activity across wide swaths of cortex as well as subcortical regions and 
the cerebellum14,38,39, and they demonstrate that attentional mecha-
nisms extend beyond traditional attention regions and networks.  
For example, although nodes in prefrontal and parietal cortex, which 
are implicated in numerous tasks requiring the deployment and main-
tenance of attention7,12,39, factored into the predictive network mod-
els, only 27% of edges in the high-attention and 34% of edges in the 
low-attention network involved nodes in these regions. Instead, the 
current results highlight the importance of data-driven analyses that 
do not constrain features to a priori nodes or edges of interest40.

The fact that network models defined in healthy adults from the 
Yale–New Haven community predicted ADHD symptoms in children 
and adolescents from Beijing suggests meaningful overlap between 
the neural mechanisms that are important for sustained attention and 
the neural dysfunction that leads to an ADHD diagnosis. Although 
valuable research has identified differences in functional connectiv-
ity between individuals with ADHD and controls in frontal, parietal, 
temporal and occipital cortices as well as in the cerebellum and stria-
tum41–48, these comparisons do not address whether the connections 
that go awry in ADHD are disrupted, to a lesser degree, in individuals 
with subclinical attention problems. The current findings suggest that 
it may be useful to consider ADHD as a continuum of neural and 
behavioral dysfunction rather than an all-or-nothing disorder.

Our findings compel a large research program to further validate 
the proposed Sustained Attention Network model across different 
attentional operations and tasks. The model presented here is a highly 
promising starting point, given that it generalizes across acquisition 
sites and participant populations, relies on a version of the widely 
used continuous performance task15–18 and predicts task perform-
ance and clinical measures of ADHD. However, although these two 

measures are both related to attentional abilities, they do not capture 
the exact same construct, and this is likely why there is significant 
but not total overlap between edges in the models trained on the two 
data sets. Stronger claims about the specificity and generalizability of 
the current model will depend on future work in which models are 
trained and tested on data from a wide variety of attention tasks; the 
use of neural data in addition to behavioral measures may even help 
separate and cluster the many cognitive processes involved in atten-
tion. The sharing of resting-state data coupled with behavioral atten-
tion task data in public databases such as ADHD-200 will facilitate 
these efforts. To improve model generalizability and predictive power, 
researchers can collaborate to identify edges that most consistently 
predict attention (or another trait or cognitive ability). The analysis 
pipeline described here can be applied to any data set that includes 
fMRI data—ideally, at least some of which is acquired at rest—and 
a measure of attention, and labs can share the resulting predictive 
networks. Defining a neuromarker of attention based on edges that 
appear commonly across tasks may reduce the risk of overfitting and 
improve generalizability.

In sum, we demonstrate that intrinsic brain connectivity is a pow-
erful predictor of sustained attention. Beyond this finding, the cur-
rent whole-brain, data-driven functional connectivity approach can 
be useful in predicting a wide range of other cognitive abilities and 
clinical symptoms.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
gradcPT data set. Participants. Thirty-one individuals from Yale University 
and the surrounding community performed a sustained attention task, the 
gradCPT17,18, during fMRI data acquisition. Six were excluded for excessive 
head motion, defined a priori as >2 mm translation or >3° rotation, in all runs 
or for a lack of whole-brain coverage, leaving 25 for analysis (13 females, ages 
18–32 years, mean age = 22.7 years). All were right handed and had normal 
or corrected-to-normal vision. Participants gave written informed consent in 
accordance with the Yale University Human Subjects Committee and were paid 
for their participation.

A post-hoc power analysis revealed that the statistical power of the gradCPT 
task analysis (train on n − 1 participants’ task matrices and test on the left-out 
participant’s task matrix) was greater than 0.99. The power of the gradCPT 
rest analysis (train on n − 1 participants’ task matrices and test on the left-out  
participant’s rest matrix) was greater than 0.62.

Paradigm and stimuli. Participants performed the gradCPT17,18 during fMRI 
scanning. Stimuli were grayscale images of city and mountain scenes with a  
diameter of 256 pixels. Presented at the center of the screen, they subtended a 
diameter of approximately 7° of visual angle.

On each trial, an image gradually transitioned from one to the next using linear 
pixel-by-pixel interpolation. Each transition took 800 ms. For 800 ms the current 
scene transitioned from the previous scene, and for the next 800 ms it transitioned 
to the next. Participants were instructed to respond via button press to city scenes, 
which occurred randomly 90% of the time, and to withhold response to moun-
tains. Accuracy was emphasized without reference to speed.

Task runs consisted of four 3-min blocks of the gradCPT interleaved with 
three 30-s blocks of rest (breaks). Breaks were indicated with a fixation circle 
in the center of the screen. To warn participants of the upcoming task, a dot 
replaced the circle for 2 s at the end of each break. Eight seconds of fixation, 
excluded from analyses, were included at the start of each run. During breaks and  
resting-state runs, participants were instructed to attend to the fixation circle in 
the center of the screen.

Procedure. Following acquisition of an anatomical magnetization prepared 
rapid gradient echo (MPRAGE), a 6 min resting scan and three 13:44 min runs 
of the gradCPT were collected. An additional 6 min resting scan was collected 
after task runs.

Behavioral analysis. Sensitivity (d′) was used to measure task performance.  
For each task block, d′ was calculated as z(hit rate) − z(false alarm rate) (in Matlab, 
norminv(hit rate)–norminv(false alarm rate)). For each participant, overall d′ 
values were calculated by averaging d′ across blocks.

Because stimuli were constantly in transition, an iterative algorithm was used 
to assign key presses to individual trials and determine accuracy17,18. First, the 
algorithm assigned unambiguous key presses. Unambiguous presses to image  
n were those that occurred after image n was 80% cohered and before image n + 1 
was 40% cohered. Next, any ambiguous presses were assigned to an adjacent trial 
if one of the two had no response, or to the closest trial if both had no response 
(unless one was a mountain, in which case participants were given the benefit of 
the doubt that they had correctly withheld a response). If multiple presses could 
be assigned to a trial, the fastest response was selected. Slight variations to this 
algorithm yielded highly similar results.

d  ′ reliability was calculated with a Spearman-Brown-corrected split-half cor-
relation comparing average performance of odd-numbered task blocks to aver-
age performance of even-numbered task blocks. d  ′ reliability was 0.975, which 
is considered excellent.

Imaging parameters and preprocessing. FMRI data were collected at the Yale 
Magnetic Resonance Research Center on a 3T Siemens Trio TIM system equipped 
with a 32-channel head coil. Functional runs included 824 (task) or 363 (rest) 
whole-brain volumes acquired using a multiband echo-planar imaging (EPI) 
sequence with the following parameters: repetition time (TR) = 1,000 ms, echo 
time (TE) = 30 ms, flip angle = 62°, acquisition matrix = 84 × 84, in-plane resolu-
tion = 2.5 mm2, 51 axial-oblique slices parallel to the ac-pc line, slice thickness = 
2.5, multiband 3, acceleration factor = 2. MPRAGE parameters were as follows: 
TR = 2530 ms, TE = 3.32, flip angle = 7°, acquisition matrix = 256 × 256, in-
plane resolution = 1.0 mm2, slice thickness = 1.0 mm, 176 sagittal slices. A 2D 
T1-weighted image with the same slice prescription as the EPI images was also 
collected for purposes of registration.

Data were analyzed using BioImage Suite49 and custom scripts in Matlab 
(Mathworks). Motion correction was performed using SPM8 (http://www.fil.
ion.ucl.ac.uk/spm/software/spm8/). Linear and quadratic drift, mean signal from 
cerebrospinal fluid, white matter, and gray matter and a 24-parameter motion 
model (6 motion parameters, 6 temporal derivatives, and their squares) were 
also regressed from the data. Finally, data were temporally smoothed with a zero 
mean unit variance Gaussian filter.

Due to excessive head motion, defined a priori as >2 mm translation or >3° 
rotation during a single run, one task run from each of five participants was 
excluded from analysis, and one resting run was excluded from each of two. 
Head motion, calculated as mean frame-to-frame displacement, did not correlate 
with d′ in any of the three task runs (first: r = 0.08, P = 0.71; second: r = −0.10,  
P = 0.62; third: r = −0.10, P = 0.65). Average d′ across the three task runs was not 
significantly correlated with average head motion during task runs (r = 0.005,  
P = 0.98) or rest runs (r = −0.17, P = 0.42).

Additional motion controls. As an additional control for motion, we confirmed 
that predictions of the leave-one-subject-out models described in the Internal  
validation: Prediction from task connectivity section of the main text did not cor-
relate with mean frame-to-frame head motion. In other words, having established 
that observed performance was not correlated with head motion, we also verified 
that predicted performance was not correlated with head motion. Indeed, predic-
tions based on gradCPT subjects’ task data were uncorrelated with motion during 
task (positive network: r = 0.03; P = 0.88; negative network: r = 0.04, P = 0.84; GLM:  
r = 0.05, P = 0.80), and predictions based on gradCPT subjects’ resting-state data 
were uncorrelated with motion during rest (positive network: r = −0.05; P = 0.80; 
negative network: r = 0.06, P = 0.77; GLM: r = 0.12, P = 0.58).

We were also unable to predict motion with network models explicitly trained 
on this variable. That is, “motion prediction models” were defined identically to 
those described in the Internal validation: Prediction from task connectivity sec-
tion of the main text, except with average frame-to-frame head motion in place 
of d′. Predictions of these “motion models” based on gradCPT subjects’ task 
data were not significantly correlated with motion during task (positive network:  
r = −0.25; P = 0.22; negative network: r = −0.07, P = 0.72; GLM: r = −0.18,  
P = 0.40), and predictions based on gradCPT subjects’ resting-state data were 
uncorrelated with motion during rest (positive network: r = 0.07; P = 0.73; nega-
tive network: r = −0.28, P = 0.18; GLM: r = −0.10, P = 0.65). Thus, despite the 
fact that head motion can pose a confound for functional connectivity analyses 
of fMRI data, the success of the SAN model appears to be unconfounded by 
artifacts related to head motion.

Network construction. Network nodes were defined using a groupwise graph-
theory-based parcellation algorithm that maximized the similarity of the time 
series of the voxels within each node21,22. To obtain the 268-node atlas used in 
the current study, the parcellation algorithm was applied to resting-state data 
from an independent sample of 45 healthy adults scanned at the Yale Magnetic 
Resonance Research Center.

The 268-node atlas was warped from MNI space into single-subject  
space via concatenation of a series of linear and nonlinear registrations  
between the functional images, 2D and 3D anatomical scans, and the MNI 
brain. All transformation pairs were calculated independently, combined into a  
single transform, and inverted, warping the functional atlas into single partici-
pant space. This single transformation reduces interpolation error because the  
functional atlas is warped to an individual with only one transformation.  
All transformations were estimated using the intensity-based registration  
algorithms in BioImage Suite.

For each participant, task matrices were calculated using data concatenated 
across task runs, excluding data collected during the intervening rest breaks  
(as well as the 6 s following them to account for hemodynamic delay). Rest  
matrices were calculated using data concatenated across rest runs.

AdHd-200 data set. Participants. Data were provided by the ADHD-200 
Consortium25, a publically available data set of resting-state fMRI data of chil-
dren with and without ADHD from eight sites across the globe. The current 
study includes data from the Peking University site, which had a large number of 
subjects with relatively low head motion. The Research Ethics Review Board of 
Institute of Mental Health, Peking University, approved data collection; informed 
consent was obtained from each participant’s parent, and all children agreed to 

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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participate in the study. Detailed descriptions of inclusion criteria and imaging 
parameters and procedures are available online at http://fcon_1000.projects.nitrc.
org/indi/adhd200/.

ADHD diagnosis was established with the Schedule of Affective Disorders 
and Schizophrenia for Children—Present and Lifetime Version (K-SADS-PL)50, 
and the ADHD Rating Scale IV (ADHD-RS)26 was used to obtain dimensional 
measures of ADHD symptoms. The ADHD-RS is composed of 18 questions, nine 
of which assess inattention, or how children attend to tasks or play activities, such 
as the degree to which a child “fails to give close attention to details” or is “easily 
distracted by extraneous stimuli.” The remaining nine assess hyperactivity and 
impulsivity levels, such as the degree to which a child “fidgets with hands or feet 
or squirms in seat” or “interrupts or intrudes on others.” Questions are rated on 
a 4-point Likert scale (0 = rarely or never, 3 = always or very often); higher scores 
represent more severe and/or more frequent symptoms. Overall ADHD score is 
calculated as the sum of all responses. Raw scores are converted to percentiles 
based on each child’s age and gender. IQ was assessed with Wechsler Intelligence 
Scale for Chinese Children-Revised.

The original Peking University data set consisted of one 8-min run of  
resting state data collected from 245 subjects (102 patients with an ADHD diag-
nosis and 143 typically developing controls; 71 females; mean age = 11.7 years; 
mean ADHD-RS score = 38.3). Data were concatenated across three data sets 
with slightly different scanning parameters. Subjects were excluded for missing 
ADHD-RS scores (23 subjects), missing fMRI data in one or more nodes of a 
236-node functional atlas (see Network Construction below for more details; 7 
subjects), or quality control flags provided by the acquisition site (3 subjects).  
In the remaining 212 subjects, mean frame-to-frame head displacement 
was correlated with ADHD-RS score, r = 0.22, P = 0.001. To eliminate this  
relationship, we incrementally lowered a motion threshold before perform-
ing prediction analyses. A threshold of 0.06 mm was selected to minimize the  
correlation between motion and ADHD-RS score, so 99 subjects with mean 
frame-to-frame displacement >0.06 mm were excluded from further analysis.

The final set of subjects consisted of 113 individuals (38 patients; 35 females; 
mean age = 11.8 years; range = 8–16 years; mean ADHD-RS score = 35.5). Of 
these patients, 25 were medication-naïve; the others’ psychostimulant medication 
was withheld starting at least 48 h before scanning. All 75 typically developing 
controls were medication-naïve. There were no correlations between mean frame-
to-frame displacement or age and ADHD-RS score (motion and ADHD-RS score: 
r = 0.03, P = 0.78; age and ADHD-RS score: r = −0.06, P = 0.56). In the 112 sub-
jects for whom an IQ score was provided, IQ was inversely related to ADHD-RS 
(r = −0.27, P = 0.004) and age (r = −0.17, P = 0.07).

Note that individuals in the ADHD-200 data set were not randomly assigned 
to groups, but were labeled as “patients” (individuals with ADHD) or “controls” 
(individuals without ADHD). The information available at http://fcon_1000.
projects.nitrc.org/indi/adhd200/ does not specify whether investigators involved 
in data collection knew each individual’s diagnostic status, but these investigators 
were not involved in assessing the outcome of the current experiment.

Image preprocessing. Images were slice-time and motion corrected using SPM5 
(http://www.fil.ion.ucl.ac.uk) and then iteratively smoothed until the smooth-
ness for any image had a full width half maximum of approximately 6 mm51. 
This iterative smoothing process minimizes motion confounds associated with 
resting-state fMRI52. All further analyses were performed using BioImage Suite49 
unless otherwise specified. Several covariates of no interest were regressed from 
the data including linear and quadratic drift, six rigid-body motion parameters, 
mean cerebral-spinal fluid signal, mean white matter signal and mean global 
signal. Finally, the data were temporally smoothed with a zero mean unit variance 
Gaussian filter (cutoff frequency = 0.12 Hz).

Network construction. Network nodes were defined using a subset of nodes of 
the 268-node functional brain atlas used for the gradCPT network analysis22. As 
some scans did not include full cortex and cerebellum coverage, nodes missing 
in at least three subjects were removed. This process resulted in the removal of 
32 nodes mainly in the inferior portions of the cerebellum, brainstem, temporal 
poles and orbital frontal cortex (Supplementary Fig. 1). All other steps taken to 
construct resting-state networks were identical to those described in the gradCPT 
data set’s Network construction section above.

Of the 757 edges in the high-attention network, 115 (15.46%) involved nodes 
that were missing in the ADHD atlas. Of the 630 edges in the low-attention 
network, 128 (20.32%) involved nodes that were missing in the ADHD atlas.  

When nodes were sorted by the number of connections they had in the high- 
and low-attention networks (Supplementary Table 2), none of the top ten 
were missing in the ADHD atlas. Missing edges (importantly, these were same 
in all the ADHD-200 subjects analyzed here) were excluded from network  
strength calculations.

network overlap. To determine the number of edges that would overlap across 
data sets by chance, we compared random gradCPT and ADHD networks. First, 
we shuffled d′ values and defined a positive and negative network exactly as 
described in the manuscript. That is, for every set of n − 1 gradCPT subjects, we 
selected edges whose strength during task performance correlated with shuffled 
d′ values at P < 0.01. The positive network was defined as edges whose strength 
was positively related to d′ in each of these 25 iterations, and the negative network 
was defined as edges whose strength was inversely related to d′ in each of these 
iterations. By definition, positive and negative networks were mutually exclusive. 
We repeated this procedure 100 times, resulting in 100 random positive networks 
(mean number of edges = 52.22, s.d. = 22.60) and 100 random negative networks 
(M = 56.59, s.d. = 25.54).

We also shuffled ADHD-RS scores 100 times and defined 100 random  
positive and negative networks using ADHD data. As described in the manuscript,  
positive and negative ADHD networks were defined on all 113 subjects rather 
than on the overlap of leave-one-out networks. Positive ADHD networks  
contained, on average, 133.54 edges (s.d. = 42.18); negative ADHD networks 
contained 136.11 edges on average (s.d. = 43.93).

To get overlap statistics, we calculated the number of overlapping edges 
between every random gradCPT network and every random ADHD network 
(10,000 comparisons in each of the four possible pairs in the 2 × 2 design 
with tail and data set as factors). Overlap did not exceed 10 edges in any case  
(M = 0.21 edges, s.d. = 0.53 edges). Thus, the P value associated with obtaining 
31 and 36 common edges is 1/10,001.

Bold variance. To address whether a measure other than functional connectiv-
ity predicted attentional abilities in the gradCPT and ADHD data sets, we trained 
and tested models on BOLD variance, a measure of the variability of the BOLD 
signal in each node that can be calculated from resting-state data. To this end, 
we first computed the mean BOLD signal in each frame. This yields an N × 268 
matrix of node-wise mean BOLD intensities for each subject for each condition, 
where N is the number of frames. (This is identical to the first step in calculating 
connectivity matrices.) For each node, using its N × 1 time course vector, we then 
computed its variance as: 

variance sum mean time course= ( )/2 N

This results in a single 1 × 268 vector of node-wise BOLD variances for task and 
rest data for each gradCPT subject.

We submitted these vectors to the predictive pipeline described in the manu-
script. That is, instead of defining models on 268 × 268 matrices (35,778 features), 
we defined them on 1 × 268 vectors (268 features). A threshold of P < 0.20 (rather 
than P < 0.01, which was used for the functional connectivity models described 
in the main text) was used for the feature selection step to ensure that at least 
one node appeared in each predictive model. As with the functional connectivity 
models, BOLD variance models trained and tested on gradCPT data were trained 
on n − 1 subjects and tested on data from the left-out individual. Models tested on 
ADHD data were trained on nodes that appeared in all rounds of leave-one-out 
cross-validation with gradCPT task data.

Models defined on BOLD variance during gradCPT task performance did 
not predict d′ scores from gradCPT task or rest data (Supplementary Table 3).  
Although the positive BOLD variance model did predict ADHD-RS scores,  
predictions were in the unexpected direction (i.e., the model predicted  
better attentional abilities for subjects with high ADHD-RS scores). This result 
demonstrates that functional connectivity is a better predictor of attention  
than BOLD variance, which is likely affected by both metabolic function and  
anatomic factors.

Prediction range. One thing to note about SAN model predictions is that the 
range of predicted values is smaller than the range of observed values. That is, 
models overestimate the abilities of the individuals with the worst attention and 
underestimate the abilities of the individuals with the best. To investigate whether 

http://fcon_1000.projects.nitrc.org/indi/adhd200/
http://fcon_1000.projects.nitrc.org/indi/adhd200/
http://fcon_1000.projects.nitrc.org/indi/adhd200/
http://fcon_1000.projects.nitrc.org/indi/adhd200/
http://www.fil.ion.ucl.ac.uk
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this effect emerged as a function of the non-Gaussian distribution of observed 
d′ scores, we used use Spearman’s (rank) correlation rather than robust regres-
sion at the edge selection step, and evaluated predictive power using Spearman’s 
correlation between predicted and observed scores. This approach yielded 
highly significant predictions from gradCPT task and rest data (Supplementary  
Fig. 2). However, models still overestimated the d′ rank of the worst subjects and 
underestimated the d′ rank of the best subjects. Thus, SAN model predictions are 
best considered relative rather than absolute.

Permutation testing. P values for the leave-one-subject-out analyses were  
calculated by converting r values using a standard parametric conversion with 
the assumption that the degrees of freedom was equal to 2 less than the number 
of subjects. However, analyses in the leave-one-out folds are not independent, 
so the number of degrees of freedom is overestimated.

To confirm that our leave-one-subject-out results are still highly signifi-
cant, we randomly shuffled  d′ values 1,000 times and ran them through our 
prediction pipeline, generating null distributions for the analyses presented in 
Supplementary Figure 2. We used Spearman’s correlation at the edge-selection  
step and evaluated predictive power using Spearman’s correlation between  
predicted and observed (randomly shuffled) scores. Based on these null distribu-
tions, the P values for leave-one-out predictions from gradCPT task data (the 
top row of Supplementary Fig. 2) are P < 0.001. The P values for prediction 
from gradCPT rest data (the bottom row of Supplementary Fig. 2) are P < 0.006 

(positive network), P < 0.008 (negative network) and P < 0.002 (GLM). Thus, our 
results remain highly significant based on nonparametric statistical testing.

We note here that the ADHD analyses presented in Figure 3 and 4 of the main 
text were not generated with leave-one-out analyses, so for those analyses P values 
can be calculated using standard parametric conversion.

code availability. The 268-node functional parcellation is available online 
on the BioImage Suite NITRC page (https://www.nitrc.org/frs/?group_id=51). 
Matlab scripts were written to identify behaviorally relevant edges, model  
the relationship between edge strength and behavior, and make predictions 
from novel individuals’ connectivity matrices. This code is available from  
the authors upon request.

A Supplementary methods checklist is available.
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